on the problems in "6 Hyperbolic functions/6.4 Hyperbolic cotangent"
Test results for the 19 problems in "6.4.1 (c+d x) ^m (a+b coth)^n.txt"

Problem 1: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \operatorname{coth}(b x+a) \mathrm{d} x
$$

Optimal (type 4, 79 leaves, 6 steps):

$$
-\frac{x^{4}}{4}+\frac{x^{3} \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b}+\frac{3 x^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{2}}-\frac{3 x \operatorname{polylog}\left(3, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{3}}+\frac{3 \operatorname{polylog}\left(4, \mathrm{e}^{2 b x+2 a}\right)}{4 b^{4}}
$$

Result(type 4, 199 leaves):

$$
\begin{aligned}
-\frac{x^{4}}{4} & -\frac{3 a^{4}}{2 b^{4}}+\frac{3 \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right) x^{2}}{b^{2}}-\frac{2 a^{3} x}{b^{3}}-\frac{6 \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right) x}{b^{3}}+\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) x^{3}}{b}+\frac{3 \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right) x^{2}}{b^{2}}-\frac{6 \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right) x}{b^{3}} \\
& +\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) x^{3}}{b}+\frac{6 \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) a^{3}}{b^{4}}+\frac{2 a^{3} \ln \left(\mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{a^{3} \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{4}}
\end{aligned}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{coth}(b x+a) \mathrm{d} x
$$

Optimal (type 4, 41 leaves, 4 steps):

$$
-\frac{x^{2}}{2}+\frac{x \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b}+\frac{\operatorname{poly} \log \left(2, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{2}}
$$

Result (type 4, 121 leaves):

$$
\begin{aligned}
-\frac{x^{2}}{2} & -\frac{2 a x}{b}-\frac{a^{2}}{b^{2}}+\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) x}{b}+\frac{a \ln \left(1-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) x}{b}+\frac{\operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{2 a \ln \left(\mathrm{e}^{b x+a}\right)}{b^{2}} \\
& -\frac{a \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{2}}
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{coth}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 63 leaves, 6 steps):

$$
-\frac{x^{2}}{b}+\frac{x^{3}}{3}-\frac{x^{2} \operatorname{coth}(b x+a)}{b}+\frac{2 x \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{\operatorname{polylog}\left(2, \mathrm{e}^{2 b x+2 a}\right)}{b^{3}}
$$

Result(type 4, 155 leaves):

$$
\begin{aligned}
\frac{x^{3}}{3}- & \frac{2 x^{2}}{b\left(\mathrm{e}^{2 b x+2 a}-1\right)}-\frac{2 x^{2}}{b}-\frac{4 a x}{b^{2}}-\frac{2 a^{2}}{b^{3}}+\frac{2 \ln \left(1-\mathrm{e}^{b x+a}\right) x}{b^{2}}+\frac{2 \ln \left(1-\mathrm{e}^{b x+a}\right) a}{b^{3}}+\frac{2 \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{2 \ln \left(1+\mathrm{e}^{b x+a}\right) x}{b^{2}} \\
& +\frac{2 \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{4 a \ln \left(\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{2 a \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{3}}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{3}}{a+a \operatorname{coth}(f x+e)} \mathrm{d} x
$$

Optimal(type 3, 153 leaves, 5 steps):

$$
\begin{aligned}
& \frac{3 d^{3} x}{8 a f^{3}}+\frac{3 d(d x+c)^{2}}{8 a f^{2}}+\frac{(d x+c)^{3}}{4 a f}+\frac{(d x+c)^{4}}{8 a d}-\frac{3 d^{3}}{8 f^{4}(a+a \operatorname{coth}(f x+e))}-\frac{3 d^{2}(d x+c)}{4 f^{3}(a+a \operatorname{coth}(f x+e))}-\frac{3 d(d x+c)^{2}}{4 f^{2}(a+a \operatorname{coth}(f x+e))} \\
& \quad-\frac{(d x+c)^{3}}{2 f(a+a \operatorname{coth}(f x+e))}
\end{aligned}
$$

Result(type 3, 928 leaves):
$\frac{1}{f^{4} a}\left(-d^{3}\left(\frac{(f x+e)^{3} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{4}}{8}-\frac{3(f x+e)^{2} \cosh (f x+e)^{2}}{4}+\frac{3(f x+e) \cosh (f x+e) \sinh (f x+e)}{4}+\frac{3(f x+e)^{2}}{8}\right.\right.$
$\left.-\frac{3 \cosh (f x+e)^{2}}{8}\right)-3 c d^{2} f\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\sinh (f x+e) \cosh (f x+e)}{4}+\frac{f x}{4}\right.$
$\left.+\frac{e}{4}\right)+3 d^{3} e\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\sinh (f x+e) \cosh (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}\right)$
$-3 c^{2} d f^{2}\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)+6 c d^{2} e f\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}\right.$
$\left.-\frac{\cosh (f x+e)^{2}}{4}\right)-3 d^{3} e^{2}\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)-c^{3} f^{3}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)$
$+3 c^{2} d e f^{2}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)-3 c d^{2} e^{2} f\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+d^{3} e^{3}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}\right.$
$\left.-\frac{e}{2}\right)+d^{3}\left(\frac{(f x+e)^{3} \cosh (f x+e)^{2}}{2}-\frac{3(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{4}-\frac{(f x+e)^{3}}{4}+\frac{3(f x+e) \cosh (f x+e)^{2}}{4}\right.$
$\left.-\frac{3 \sinh (f x+e) \cosh (f x+e)}{8}-\frac{3 f x}{8}-\frac{3 e}{8}\right)+3 c d^{2} f\left(\frac{(f x+e)^{2} \cosh (f x+e)^{2}}{2}-\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}\right.$
$\left.+\frac{\cosh (f x+e)^{2}}{4}\right)-3 d^{3} e\left(\frac{(f x+e)^{2} \cosh (f x+e)^{2}}{2}-\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}+\frac{\cosh (f x+e)^{2}}{4}\right)$
$+3 c^{2} d f^{2}\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}-\frac{\sinh (f x+e) \cosh (f x+e)}{4}-\frac{f x}{4}-\frac{e}{4}\right)-6 c d^{2} e f\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}-\frac{\sinh (f x+e) \cosh (f x+e)}{4}\right.$
$\left.-\frac{f x}{4}-\frac{e}{4}\right)+3 d^{3} e^{2}\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}-\frac{\sinh (f x+e) \cosh (f x+e)}{4}-\frac{f x}{4}-\frac{e}{4}\right)+\frac{c^{3} f^{3} \cosh (f x+e)^{2}}{2}-\frac{3 c^{2} d e f^{2} \cosh (f x+e)^{2}}{2}$

$$
\left.+\frac{3 c d^{2} e^{2} f \cosh (f x+e)^{2}}{2}-\frac{d^{3} e^{3} \cosh (f x+e)^{2}}{2}\right)
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{2}}{a+a \operatorname{coth}(f x+e)} d x
$$

Optimal(type 3, 110 leaves, 4 steps):

$$
\frac{d^{2} x}{4 a f^{2}}+\frac{(d x+c)^{2}}{4 a f}+\frac{(d x+c)^{3}}{6 a d}-\frac{d^{2}}{4 f^{3}(a+a \operatorname{coth}(f x+e))}-\frac{d(d x+c)}{2 f^{2}(a+a \operatorname{coth}(f x+e))}-\frac{(d x+c)^{2}}{2 f(a+a \operatorname{coth}(f x+e))}
$$

Result(type 3, 448 leaves):
$\frac{1}{f^{3} a}\left(-d^{2}\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\sinh (f x+e) \cosh (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}\right)\right.$

$$
-2 c d f\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)+2 d^{2} e\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}\right.
$$

$$
\left.-\frac{\cosh (f x+e)^{2}}{4}\right)-c^{2} f^{2}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+2 c d e f\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)
$$

$$
-d^{2} e^{2}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+d^{2}\left(\frac{(f x+e)^{2} \cosh (f x+e)^{2}}{2}-\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}\right.
$$

$$
\left.+\frac{\cosh (f x+e)^{2}}{4}\right)+2 c d f\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}-\frac{\sinh (f x+e) \cosh (f x+e)}{4}-\frac{f x}{4}-\frac{e}{4}\right)-2 d^{2} e\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}\right.
$$

$$
\left.\left.-\frac{\sinh (f x+e) \cosh (f x+e)}{4}-\frac{f x}{4}-\frac{e}{4}\right)+\frac{c^{2} f^{2} \cosh (f x+e)^{2}}{2}-c d e f \cosh (f x+e)^{2}+\frac{d^{2} e^{2} \cosh (f x+e)^{2}}{2}\right)
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{a+a \operatorname{coth}(f x+e)} \mathrm{d} x
$$

Optimal(type 3, 69 leaves, 3 steps):

$$
\frac{d x}{4 a f}+\frac{(d x+c)^{2}}{4 a d}-\frac{d}{4 f^{2}(a+a \operatorname{coth}(f x+e))}+\frac{-d x-c}{2 f(a+a \operatorname{coth}(f x+e))}
$$

Result(type 3, 164 leaves):
$\frac{1}{f^{2} a}\left(-d\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)-c f\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)\right.$
$+d e\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+d\left(\frac{(f x+e) \cosh (f x+e)^{2}}{2}-\frac{\sinh (f x+e) \cosh (f x+e)}{4}-\frac{f x}{4}-\frac{e}{4}\right)+\frac{c f \cosh (f x+e)^{2}}{2}$ $\left.-\frac{d e \cosh (f x+e)^{2}}{2}\right)$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{2}}{(a+a \operatorname{coth}(f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 150 leaves, 8 steps):

$$
-\frac{d^{2} \mathrm{e}^{-4 f x-4 e}}{128 a^{2} f^{3}}+\frac{d^{2} \mathrm{e}^{-2 f x-2 e}}{8 a^{2} f^{3}}-\frac{d \mathrm{e}^{-4 f x-4 e}(d x+c)}{32 a^{2} f^{2}}+\frac{d \mathrm{e}^{-2 f x-2 e}(d x+c)}{4 a^{2} f^{2}}-\frac{\mathrm{e}^{-4 f x-4 e}(d x+c)^{2}}{16 a^{2} f}+\frac{\mathrm{e}^{-2 f x-2 e}(d x+c)^{2}}{4 a^{2} f}+\frac{(d x+c)^{3}}{12 a^{2} d}
$$

Result(type 3, 1056 leaves):
$\frac{1}{f^{3} a^{2}}\left(2 d^{2}\left(\frac{(f x+e)^{2} \sinh (f x+e) \cosh (f x+e)^{3}}{4}-\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{8}-\frac{(f x+e)^{3}}{24}-\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{8}\right.\right.$
$\left.+\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{32}-\frac{\sinh (f x+e) \cosh (f x+e)}{64}-\frac{f x}{64}-\frac{e}{64}\right)+4 c d f\left(\frac{(f x+e) \sinh (f x+e) \cosh (f x+e)^{3}}{4}\right.$
$\left.-\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{8}-\frac{(f x+e)^{2}}{16}-\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{16}\right)-4 d^{2} e\left(\frac{(f x+e) \sinh (f x+e) \cosh (f x+e)^{3}}{4}\right.$
$\left.-\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{8}-\frac{(f x+e)^{2}}{16}-\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{16}\right)+2 c^{2} f^{2}\left(\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{4}\right.$
$\left.-\frac{\sinh (f x+e) \cosh (f x+e)}{8}-\frac{f x}{8}-\frac{e}{8}\right)-4 c d e f\left(\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{4}-\frac{\sinh (f x+e) \cosh (f x+e)}{8}-\frac{f x}{8}-\frac{e}{8}\right)$
$+2 d^{2} e^{2}\left(\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{4}-\frac{\sinh (f x+e) \cosh (f x+e)}{8}-\frac{f x}{8}-\frac{e}{8}\right)-2 d^{2}\left(\frac{(f x+e)^{2} \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{4}\right.$
$-\frac{(f x+e)^{2} \cosh (f x+e)^{2}}{4}-\frac{(f x+e) \sinh (f x+e) \cosh (f x+e)^{3}}{8}+\frac{5(f x+e) \cosh (f x+e) \sinh (f x+e)}{16}+\frac{5(f x+e)^{2}}{32}$
$\left.+\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{32}-\frac{\cosh (f x+e)^{2}}{8}\right)-4 c d f\left(\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{4}-\frac{(f x+e) \cosh (f x+e)^{2}}{4}\right.$
$\left.-\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{16}+\frac{5 \sinh (f x+e) \cosh (f x+e)}{32}+\frac{5 f x}{32}+\frac{5 e}{32}\right)+4 d^{2} e\left(\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{4}\right.$
$\left.-\frac{(f x+e) \cosh (f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{16}+\frac{5 \sinh (f x+e) \cosh (f x+e)}{32}+\frac{5 f x}{32}+\frac{5 e}{32}\right)-2 c^{2} f^{2}\left(\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{4}\right.$
$\left.-\frac{\cosh (f x+e)^{2}}{4}\right)+4 c d e f\left(\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)-2 d^{2} e^{2}\left(\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)$
$-d^{2}\left(\frac{(f x+e)^{2} \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{3}}{6}-\frac{(f x+e) \cosh (f x+e)^{2}}{2}+\frac{\sinh (f x+e) \cosh (f x+e)}{4}+\frac{f x}{4}+\frac{e}{4}\right)$
$-2 c d f\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)+2 d^{2} e\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{2}-\frac{(f x+e)^{2}}{4}\right.$
$\left.-\frac{\cosh (f x+e)^{2}}{4}\right)-c^{2} f^{2}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)+2 c d e f\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)$
$\left.-d^{2} e^{2}\left(\frac{\sinh (f x+e) \cosh (f x+e)}{2}-\frac{f x}{2}-\frac{e}{2}\right)\right)$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{(a+a \operatorname{coth}(f x+e))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 174 leaves, 11 steps):

$$
\begin{aligned}
& \frac{11 d x}{96 a^{3} f}-\frac{d x^{2}}{16 a^{3}}+\frac{x(d x+c)}{8 a^{3}}-\frac{d}{36 f^{2}(a+a \operatorname{coth}(f x+e))^{3}}+\frac{-d x-c}{6 f(a+a \operatorname{coth}(f x+e))^{3}}-\frac{5 d}{96 a f^{2}(a+a \operatorname{coth}(f x+e))^{2}}+\frac{-d x-c}{8 a f(a+a \operatorname{coth}(f x+e))^{2}} \\
& \quad-\frac{11 d}{96 f^{2}\left(a^{3}+a^{3} \operatorname{coth}(f x+e)\right)}+\frac{-d x-c}{8 f\left(a^{3}+a^{3} \operatorname{coth}(f x+e)\right)}
\end{aligned}
$$

$$
\text { Result(type 3, } 770 \text { leaves): }
$$

$$
\frac{1}{f^{2} a^{3}}\left(4 d \left(\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{4}}{6}-\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{12}-\frac{(f x+e) \cosh (f x+e)^{2}}{12}-\frac{\sinh (f x+e) \cosh (f x+e)^{5}}{36}\right.\right.
$$

$$
\left.+\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{36}+\frac{\sinh (f x+e) \cosh (f x+e)}{24}+\frac{f x}{24}+\frac{e}{24}\right)+4 c f\left(\frac{\sinh (f x+e)^{2} \cosh (f x+e)^{4}}{6}-\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{12}\right.
$$

$$
\left.-\frac{\cosh (f x+e)^{2}}{12}\right)-4 d e\left(\frac{\sinh (f x+e)^{2} \cosh (f x+e)^{4}}{6}-\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{12}-\frac{\cosh (f x+e)^{2}}{12}\right)
$$

$$
-4 d\left(\frac{(f x+e) \sinh (f x+e)^{3} \cosh (f x+e)^{3}}{6}-\frac{(f x+e) \sinh (f x+e) \cosh (f x+e)^{3}}{8}+\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)}{16}+\frac{(f x+e)^{2}}{32}\right.
$$

$$
\left.-\frac{\sinh (f x+e)^{2} \cosh (f x+e)^{4}}{36}+\frac{13 \cosh (f x+e)^{2} \sinh (f x+e)^{2}}{288}+\frac{\cosh (f x+e)^{2}}{72}\right)-4 c f\left(\frac{\sinh (f x+e)^{3} \cosh (f x+e)^{3}}{6}\right.
$$

$$
\left.-\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{8}+\frac{\sinh (f x+e) \cosh (f x+e)}{16}+\frac{f x}{16}+\frac{e}{16}\right)+4 d e\left(\frac{\sinh (f x+e)^{3} \cosh (f x+e)^{3}}{6}-\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{8}\right.
$$

$$
\left.+\frac{\sinh (f x+e) \cosh (f x+e)}{16}+\frac{f x}{16}+\frac{e}{16}\right)-3 d\left(\frac{(f x+e) \sinh (f x+e)^{2} \cosh (f x+e)^{2}}{4}-\frac{(f x+e) \cosh (f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{3} \sinh (f x+e)}{16}\right.
$$

$$
\left.+\frac{5 \sinh (f x+e) \cosh (f x+e)}{32}+\frac{5 f x}{32}+\frac{5 e}{32}\right)-3 c f\left(\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{4}-\frac{\cosh (f x+e)^{2}}{4}\right)+3 d e\left(\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{4}\right.
$$

$$
\left.-\frac{\cosh (f x+e)^{2}}{4}\right)+d\left(\frac{(f x+e) \cosh (f x+e) \sinh (f x+e)^{3}}{4}-\frac{3(f x+e) \cosh (f x+e) \sinh (f x+e)}{8}+\frac{3(f x+e)^{2}}{16}-\frac{\cosh (f x+e)^{2} \sinh (f x+e)^{2}}{16}\right.
$$

$$
\left.+\frac{\cosh (f x+e)^{2}}{4}\right)+c f\left(\left(\frac{\sinh (f x+e)^{3}}{4}-\frac{3 \sinh (f x+e)}{8}\right) \cosh (f x+e)+\frac{3 f x}{8}+\frac{3 e}{8}\right)-d e\left(\left(\frac{\sinh (f x+e)^{3}}{4}-\frac{3 \sinh (f x+e)}{8}\right) \cosh (f x+e)\right.
$$

$$
\left.\left.+\frac{3 f x}{8}+\frac{3 e}{8}\right)\right)
$$

Problem 12: Unable to integrate problem.

$$
\int \frac{(d x+c)^{m}}{(a+a \operatorname{coth}(f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 148 leaves, 4 steps):

$$
\frac{(d x+c)^{1+m}}{4 a^{2} d(1+m)}+\frac{2^{-2-m} \mathrm{e}^{-2 e+\frac{2 c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{2 f(d x+c)}{d}\right)}{a^{2} f\left(\frac{f(d x+c)}{d}\right)^{m}}-\frac{4^{-2-m} \mathrm{e}^{-4 e+\frac{4 c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{4 f(d x+c)}{d}\right)}{a^{2} f\left(\frac{f(d x+c)}{d}\right)^{m}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{(d x+c)^{m}}{(a+a \operatorname{coth}(f x+e))^{2}} \mathrm{~d} x
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)(a+b \operatorname{coth}(f x+e)) \mathrm{d} x
$$

Optimal(type 4, 69 leaves, 6 steps):

$$
\frac{a(d x+c)^{2}}{2 d}-\frac{b(d x+c)^{2}}{2 d}+\frac{b(d x+c) \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{b d \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}
$$

Result(type 4, 200 leaves):

$$
\begin{aligned}
& \frac{a d x^{2}}{2}-\frac{b d x^{2}}{2}+c a x+b c x-\frac{2 b c \ln \left(\mathrm{e}^{f x+e}\right)}{f}+\frac{b c \ln \left(1+\mathrm{e}^{f x+e}\right)}{f}+\frac{b c \ln \left(\mathrm{e}^{f x+e}-1\right)}{f}-\frac{2 b d e x}{f}-\frac{b d e^{2}}{f^{2}}+\frac{b d \ln \left(1-\mathrm{e}^{f x+e}\right) x}{f} \\
& \quad+\frac{b d \ln \left(1-\mathrm{e}^{f x+e}\right) e}{f^{2}}+\frac{b d \operatorname{polylog}\left(2, \mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{b d \ln \left(1+\mathrm{e}^{f x+e}\right) x}{f}+\frac{b d \operatorname{polylog}\left(2,-\mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{2 b d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{b d e \ln \left(\mathrm{e}^{f x+e}-1\right)}{f^{2}}
\end{aligned}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3}(a+b \operatorname{coth}(f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 524 leaves, 28 steps):

$$
\begin{aligned}
& -\frac{3 b^{3} d(d x+c)^{2}}{2 f^{2}}-\frac{3 a b^{2}(d x+c)^{3}}{f}+\frac{b^{3}(d x+c)^{3}}{2 f}+\frac{a^{3}(d x+c)^{4}}{4 d}-\frac{3 a^{2} b(d x+c)^{4}}{4 d}+\frac{3 a b^{2}(d x+c)^{4}}{4 d}-\frac{b^{3}(d x+c)^{4}}{4 d} \\
& -\frac{3 b^{3} d(d x+c)^{2} \operatorname{coth}(f x+e)}{2 f^{2}}-\frac{3 a b^{2}(d x+c)^{3} \operatorname{coth}(f x+e)}{f}-\frac{b^{3}(d x+c)^{3} \operatorname{coth}(f x+e)^{2}}{2 f}+\frac{3 b^{3} d^{2}(d x+c) \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f^{3}} \\
& \quad+\frac{9 a b^{2} d(d x+c)^{2} \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f^{2}}+\frac{3 a^{2} b(d x+c)^{3} \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{b^{3}(d x+c)^{3} \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{3 b^{3} d^{3} \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{4}} \\
& \quad+\frac{9 a b^{2} d^{2}(d x+c) \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{f^{3}}+\frac{9 a^{2} b d(d x+c)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}+\frac{3 b^{3} d(d x+c)^{2} \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}} \\
& \quad-\frac{9 a b^{2} d^{3} \operatorname{polylog}\left(3, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{4}}-\frac{9 a^{2} b d^{2}(d x+c) \operatorname{polylog}\left(3, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}-\frac{3 b^{3} d^{2}(d x+c) \operatorname{polylog}\left(3, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{3}}+\frac{9 a^{2} b d^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 f x+2 e}\right)}{4 f^{4}} \\
& \\
& +\frac{3 b^{3} d^{3} \operatorname{polylog}\left(4, \mathrm{e}^{2 f x+2 e}\right)}{4 f^{4}}
\end{aligned}
$$

Result(type ?, 2776 leaves): Display of huge result suppressed!
Problem 17: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)(a+b \operatorname{coth}(f x+e))^{3} \mathrm{~d} x
$$

Optimal(type 4, 243 leaves, 16 steps):

$$
\begin{aligned}
& 3 a b^{2} c x+\frac{b^{3} d x}{2 f}+\frac{3 a b^{2} d x^{2}}{2}+\frac{a^{3}(d x+c)^{2}}{2 d}-\frac{3 a^{2} b(d x+c)^{2}}{2 d}-\frac{b^{3}(d x+c)^{2}}{2 d}-\frac{b^{3} d \operatorname{coth}(f x+e)}{2 f^{2}}-\frac{3 a b^{2}(d x+c) \operatorname{coth}(f x+e)}{f} \\
& -\frac{b^{3}(d x+c) \operatorname{coth}(f x+e)^{2}}{2 f}+\frac{3 a^{2} b(d x+c) \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{b^{3}(d x+c) \ln \left(1-\mathrm{e}^{2 f x+2 e}\right)}{f}+\frac{3 a b^{2} d \ln (\sinh (f x+e))}{f^{2}} \\
& \quad+\frac{3 a^{2} b d \operatorname{polylog}\left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}+\frac{b^{3} d \operatorname{poly} \log \left(2, \mathrm{e}^{2 f x+2 e}\right)}{2 f^{2}}
\end{aligned}
$$

Result(type 4, 650 leaves):

$$
\begin{aligned}
& -\frac{6 b a^{2} d e x}{f}+\frac{3 b \ln \left(1-\mathrm{e}^{f x+e}\right) a^{2} d x}{f}+\frac{3 b \ln \left(1+\mathrm{e}^{f x+e}\right) a^{2} d x}{f}+\frac{3 b \ln \left(1-\mathrm{e}^{f x+e}\right) a^{2} d e}{f^{2}}+\frac{6 b a^{2} d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{3 b a^{2} d e \ln \left(\mathrm{e}^{f x+e}-1\right)}{f^{2}} \\
& \quad+\frac{b^{3} \ln \left(1-\mathrm{e}^{f x+e}\right) d e}{f^{2}}-\frac{6 b^{2} a d \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{3 b^{2} a d \ln \left(1+\mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{3 b^{2} a d \ln \left(\mathrm{e}^{f x+e}-1\right)}{f^{2}}+\frac{2 b^{3} d e \ln \left(\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{b^{3} d e \ln \left(\mathrm{e}^{f x+e}-1\right)}{f^{2}} \\
& \\
& -\frac{6 b a^{2} c \ln \left(\mathrm{e}^{f x+e}\right)}{f}+\frac{3 b a^{2} c \ln \left(1+\mathrm{e}^{f x+e}\right)}{f}+\frac{3 b a^{2} c \ln \left(\mathrm{e}^{f x+e}-1\right)}{f}-\frac{2 b^{3} d e x}{f}-\frac{3 b a^{2} d e^{2}}{f^{2}}+\frac{b^{3} \ln \left(1-\mathrm{e}^{f x+e}\right) d x}{f}+\frac{b^{3} \ln \left(1+\mathrm{e}^{f x+e}\right) d x}{f} \\
& \quad+\frac{3 b a^{2} d \operatorname{poly} \log \left(2, \mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{3 b a^{2} d \operatorname{poly\operatorname {log}(2,-\mathrm {e}^{fx+e})}}{f^{2}}-\frac{b^{3} d e^{2}}{f^{2}}+\frac{b^{3} d \operatorname{polylog}\left(2, \mathrm{e}^{f x+e}\right)}{f^{2}}+\frac{b^{3} d \operatorname{polylog}\left(2,-\mathrm{e}^{f x+e}\right)}{f^{2}}-\frac{2 b^{3} c \ln \left(\mathrm{e}^{f x+e}\right)}{f} \\
& \\
& +\frac{b^{3} c \ln \left(1+\mathrm{e}^{f x+e}\right)}{f}+\frac{b^{3} c \ln \left(\mathrm{e}^{f x+e}-1\right)}{f} \\
& \quad-\frac{b^{2}\left(6 a d f x \mathrm{e}^{2 f x+2 e}+2 b d f x \mathrm{e}^{2 f x+2 e}+6 a c f \mathrm{e}^{2 f x+2 e}+2 b c f \mathrm{e}^{2 f x+2 e}-6 a d f x+b d \mathrm{e}^{2 f x+2 e}-6 a c f-b d\right)}{f^{2}\left(\mathrm{e}^{2 f x+2 e}-1\right)^{2}}-\frac{3 b a^{2} x^{2} d}{2}+3 b a^{2} c x+3 a b^{2} c x \\
& \\
& +\frac{3 a b^{2} d x^{2}}{2}+\frac{a^{3} d x^{2}}{2}-\frac{b^{3} x^{2} d}{2}+c a^{3} x+b^{3} c x
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{d x+c}{(a+b \operatorname{coth}(f x+e))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 195 leaves, 5 steps):
$-\frac{(d x+c)^{2}}{2\left(a^{2}-b^{2}\right) d}+\frac{(-2 a d f x-2 a c f+b d)^{2}}{4 a(a-b)(a+b)^{2} d f^{2}}+\frac{b(d x+c)}{\left(a^{2}-b^{2}\right) f(a+b \operatorname{coth}(f x+e))}+\frac{b(-2 a d f x-2 a c f+b d) \ln \left(1+\frac{-a+b}{\left.(a+b) \mathrm{e}^{2 f x+2 e}\right)}\right.}{\left(a^{2}-b^{2}\right)^{2} f^{2}}$

$$
+\frac{a b d \operatorname{polylog}\left(2, \frac{a-b}{(a+b) \mathrm{e}^{2 f x+2 e}}\right)}{\left(a^{2}-b^{2}\right)^{2} f^{2}}
$$

Result(type 4, 523 leaves):

$$
\begin{aligned}
& \frac{d x^{2}}{2\left(a^{2}+2 b a+b^{2}\right)}+\frac{c x}{a^{2}+2 b a+b^{2}}-\frac{2 b^{2}(d x+c)}{(a-b) f\left(a^{2}+2 b a+b^{2}\right)\left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}-a+b\right)}-\frac{2 b^{2} d \ln \left(\mathrm{e}^{f x+e}\right)}{(a+b)^{2}(a-b)^{2} f^{2}} \\
& +\frac{b^{2} d \ln \left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}-a+b\right)}{(a+b)^{2}(a-b)^{2} f^{2}}+\frac{4 b a c \ln \left(\mathrm{e}^{f x+e}\right)}{(a+b)^{2}(a-b)^{2} f}-\frac{2 b a c \ln \left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}-a+b\right)}{(a+b)^{2}(a-b)^{2} f}-\frac{4 b a d e \ln \left(\mathrm{e}^{f x+e}\right)}{(a+b)^{2}(a-b)^{2} f^{2}} \\
& +\frac{2 b a d e \ln \left(a \mathrm{e}^{2 f x+2 e}+b \mathrm{e}^{2 f x+2 e}-a+b\right)}{(a+b)^{2}(a-b)^{2} f^{2}}-\frac{2 b a d \ln \left(1-\frac{(a+b) \mathrm{e}^{2 f x+2 e}}{a-b}\right) x}{(a+b)^{2}(a-b)^{2} f}-\frac{2 b a d \ln \left(1-\frac{(a+b) \mathrm{e}^{2 f x+2 e}}{a-b}\right) e}{(a+b)^{2}(a-b)^{2} f^{2}}+\frac{2 b a d x^{2}}{(a+b)^{2}(a-b)^{2}} \\
& +\frac{4 b a d e x}{(a+b)^{2}(a-b)^{2} f}+\frac{2 b a d e^{2}}{(a+b)^{2}(a-b)^{2} f^{2}}-\frac{b a d \operatorname{polylog}\left(2, \frac{(a+b) \mathrm{e}^{2 f x+2 e}}{a-b}\right)}{(a+b)^{2}(a-b)^{2} f^{2}}
\end{aligned}
$$

Test results for the 58 problems in "6.4.2 Hyperbolic cotangent functions.txt"
Problem 5: Unable to integrate problem.

$$
\int \operatorname{coth}(b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 5, 41 leaves, 2 steps):

$$
\frac{\operatorname{coth}(b x+a)^{1+n} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \operatorname{coth}(b x+a)^{2}\right)}{b(1+n)}
$$

Result(type 8, 10 leaves):

$$
\int \operatorname{coth}(b x+a)^{n} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int(b \operatorname{coth}(d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 46 leaves, 2 steps):

$$
\frac{(b \operatorname{coth}(d x+c))^{1+n} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \operatorname{coth}(d x+c)^{2}\right)}{b d(1+n)}
$$

Result(type 8, 12 leaves):

$$
\int(b \operatorname{coth}(d x+c))^{n} \mathrm{~d} x
$$

Problem 7: Unable to integrate problem.

$$
\int\left(b \operatorname{coth}(d x+c)^{2}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 47 leaves, 3 steps):

$$
\frac{\operatorname{coth}(d x+c)\left(b \operatorname{coth}(d x+c)^{2}\right)^{n} \text { hypergeom }\left(\left[1, \frac{1}{2}+n\right],\left[\frac{3}{2}+n\right], \operatorname{coth}(d x+c)^{2}\right)}{d(1+2 n)}
$$

Result(type 8, 14 leaves):

$$
\int\left(b \operatorname{coth}(d x+c)^{2}\right)^{n} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \mathrm{~d} x
$$

Optimal (type 3, 239 leaves, 14 steps):
$\frac{\operatorname{arctanh}\left(\operatorname{coth}(d x+c)^{1 / 3}\right)\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3}}{d \operatorname{coth}(d x+c)^{4 / 3}}-\frac{\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \ln \left(1-\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d \operatorname{coth}(d x+c)^{4 / 3}}$

$$
\begin{aligned}
& +\frac{\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \ln \left(1+\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d \operatorname{coth}(d x+c)^{4 / 3}}-\frac{\arctan \left(\frac{\left(1-2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right)\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \sqrt{3}}{2 d \operatorname{coth}(d x+c)^{4 / 3}} \\
& +\frac{\arctan \left(\frac{\left(1+2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right)\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \sqrt{3}}{2 d \operatorname{coth}(d x+c)^{4 / 3}}-\frac{3\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \tanh (d x+c)}{d}
\end{aligned}
$$

Result(type 8, 14 leaves):

$$
\int\left(b \operatorname{coth}(d x+c)^{2}\right)^{2 / 3} \mathrm{~d} x
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int\left(b \operatorname{coth}(d x+c)^{3}\right)^{1 / 3} \mathrm{~d} x
$$

Optimal(type 3, 29 leaves, 2 steps):

$$
\frac{\left(b \operatorname{coth}(d x+c)^{3}\right)^{1 / 3} \ln (\sinh (d x+c)) \tanh (d x+c)}{d}
$$

Result(type 3, 191 leaves):
$\frac{\left(\frac{b\left(\mathrm{e}^{2 d x+2 c}+1\right)^{3}}{\left(\mathrm{e}^{2 d x+2 c}-1\right)^{3}}\right)^{1 / 3}\left(\mathrm{e}^{2 d x+2 c}-1\right) x}{\mathrm{e}^{2 d x+2 c}+1}-\frac{2\left(\frac{b\left(\mathrm{e}^{2 d x+2 c}+1\right)^{3}}{\left(\mathrm{e}^{2 d x+2 c}-1\right)^{3}}\right)^{1 / 3}\left(\mathrm{e}^{2 d x+2 c}-1\right)(d x+c)}{\left(\mathrm{e}^{2 d x+2 c}+1\right) d}$

Problem 13: Unable to integrate problem.

$$
\int\left(b \operatorname{coth}(d x+c)^{4}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 51 leaves, 3 steps):

$$
\operatorname{coth}(d x+c)\left(b \operatorname{coth}(d x+c)^{4}\right)^{n} \text { hypergeom }\left(\left[1, \frac{1}{2}+2 n\right],\left[\frac{3}{2}+2 n\right], \operatorname{coth}(d x+c)^{2}\right)
$$

$$
d(1+4 n)
$$

Result(type 8, 14 leaves):

$$
\int\left(b \operatorname{coth}(d x+c)^{4}\right)^{n} d x
$$

Problem 15: Unable to integrate problem.

$$
\int\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \mathrm{~d} x
$$

Optimal(type 3, 239 leaves, 14 steps):
$\frac{\operatorname{arctanh}\left(\operatorname{coth}(d x+c)^{1 / 3}\right)\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3}}{d \operatorname{coth}(d x+c)^{8 / 3}}-\frac{\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \ln \left(1-\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d \operatorname{coth}(d x+c)^{8 / 3}}$
$+\frac{\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \ln \left(1+\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d \operatorname{coth}(d x+c)^{8 / 3}}+\frac{\arctan \left(\frac{\left(1-2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right)\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \sqrt{3}}{2 d \operatorname{coth}(d x+c)^{8 / 3}}$
$-\frac{\arctan \left(\frac{\left(1+2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right)\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \sqrt{3}}{2 d \operatorname{coth}(d x+c)^{8 / 3}}-\frac{3\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \tanh (d x+c)}{5 d}$
Result (type 8, 14 leaves):

$$
\int\left(b \operatorname{coth}(d x+c)^{4}\right)^{2 / 3} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 239 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{3 \operatorname{coth}(d x+c)}{d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}+\frac{\operatorname{arctanh}\left(\operatorname{coth}(d x+c)^{1 / 3}\right) \operatorname{coth}(d x+c)^{4 / 3}}{d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}-\frac{\operatorname{coth}(d x+c)^{4 / 3} \ln \left(1-\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \\
& +\frac{\operatorname{coth}(d x+c)^{4 / 3} \ln \left(1+\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}+\frac{\arctan \left(\frac{\left(1-2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right) \operatorname{coth}(d x+c)^{4 / 3} \sqrt{3}}{2 d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \\
& \quad-\frac{\arctan \left(\frac{\left(1+2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right) \operatorname{coth}(d x+c)^{4 / 3} \sqrt{3}}{2 d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}
\end{aligned}
$$

Result (type 8, 14 leaves):

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{4}\right)^{4 / 3}} d x
$$

Optimal(type 3, 311 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{3 \operatorname{coth}(d x+c)}{b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}+\frac{\operatorname{arctanh}\left(\operatorname{coth}(d x+c)^{1 / 3}\right) \operatorname{coth}(d x+c)^{4 / 3}}{b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}-\frac{\operatorname{coth}(d x+c)^{4 / 3} \ln \left(1-\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \\
& +\frac{\operatorname{coth}(d x+c)^{4 / 3} \ln \left(1+\operatorname{coth}(d x+c)^{1 / 3}+\operatorname{coth}(d x+c)^{2 / 3}\right)}{4 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}+\frac{\arctan \left(\frac{\left(1-2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right) \operatorname{coth}(d x+c)^{4 / 3} \sqrt{3}}{2 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}} \\
& -\frac{\arctan \left(\frac{\left(1+2 \operatorname{coth}(d x+c)^{1 / 3}\right) \sqrt{3}}{3}\right) \operatorname{coth}(d x+c)^{4 / 3} \sqrt{3}}{2 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}-\frac{3 \tanh (d x+c)}{7 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}-\frac{3 \tanh (d x+c)^{3}}{13 b d\left(b \operatorname{coth}(d x+c)^{4}\right)^{1 / 3}}
\end{aligned}
$$

Result(type 8, 14 leaves):

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{4}\right)^{4 / 3}} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3} \mathrm{~d} x
$$

Optimal(type 5, 52 leaves, 3 steps):

$$
3 \operatorname{coth}(d x+c)\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3} \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{m}{3}\right],\left[\frac{3}{2}+\frac{m}{3}\right], \operatorname{coth}(d x+c)^{2}\right)
$$

Result(type 8, 14 leaves):

$$
\int\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3} \mathrm{~d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 52 leaves, 3 steps):

$$
\frac{3 \operatorname{coth}(d x+c) \text { hypergeom }\left(\left[1, \frac{1}{2}-\frac{m}{3}\right],\left[\frac{3}{2}-\frac{m}{3}\right], \operatorname{coth}(d x+c)^{2}\right)}{d(3-2 m)\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3}}
$$

Result(type 8, 14 leaves):

$$
\int \frac{1}{\left(b \operatorname{coth}(d x+c)^{m}\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int(a+b \operatorname{coth}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 3, 38 leaves, 2 steps):

$$
\left(a^{2}+b^{2}\right) x-\frac{b^{2} \operatorname{coth}(d x+c)}{d}+\frac{2 a b \ln (\sinh (d x+c))}{d}
$$

Result(type 3, 115 leaves):
$-\frac{b^{2} \operatorname{coth}(d x+c)}{d}-\frac{\ln (\operatorname{coth}(d x+c)-1) a^{2}}{2 d}-\frac{\ln (\operatorname{coth}(d x+c)-1) b a}{d}-\frac{\ln (\operatorname{coth}(d x+c)-1) b^{2}}{2 d}+\frac{\ln (\operatorname{coth}(d x+c)+1) a^{2}}{2 d}$
$-\frac{\ln (\operatorname{coth}(d x+c)+1) b a}{d}+\frac{\ln (\operatorname{coth}(d x+c)+1) b^{2}}{2 d}$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{2}}{1+\operatorname{coth}(x)} d x
$$

Optimal(type 3, 30 leaves, 4 steps):

$$
-\frac{3 x}{8}-\frac{1}{8(1-\operatorname{coth}(x))}+\frac{1}{8(1+\operatorname{coth}(x))^{2}}+\frac{1}{4(1+\operatorname{coth}(x))}
$$

Result(type 3, 69 leaves):

$$
\begin{aligned}
& \frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{8}+\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{3\left(\tanh \left(\frac{x}{2}\right)-1\right)}{4} \\
& \quad+\frac{\left.3 \tanh \left(\frac{x}{2}\right)-1\right)}{8}
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)}{1+\operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 15 leaves, 2 steps):

$$
\frac{2 \cosh (x)}{3}-\frac{\sinh (x)}{3(1+\operatorname{coth}(x))}
$$

Result(type 3, 39 leaves):

$$
-\frac{2}{3\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{1}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)}
$$

Problem 31: Unable to integrate problem.

$$
\int \operatorname{sech}(x)^{2} \sqrt{1+\operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 17 leaves, 4 steps):

$$
\operatorname{arctanh}(\sqrt{1+\operatorname{coth}(x)})+\sqrt{1+\operatorname{coth}(x)} \tanh (x)
$$

Result(type 8, 13 leaves):

$$
\int \operatorname{sech}(x)^{2} \sqrt{1+\operatorname{coth}(x)} \mathrm{d} x
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{3}}{a+b \operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 75 leaves, 9 steps):

$$
\frac{\arctan (\sinh (x))}{2 a}-\frac{b^{2} \arctan (\sinh (x))}{a^{3}}-\frac{b \operatorname{sech}(x)}{a^{2}}+\frac{b \operatorname{arctanh}\left(\frac{a \cosh (x)+b \sinh (x)}{\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{a^{3}}+\frac{\operatorname{sech}(x) \tanh (x)}{2 a}
$$

Result(type 3, 186 leaves):

$$
\begin{aligned}
& -\frac{2 b \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right) b+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{a \sqrt{-a^{2}+b^{2}}}+\frac{2 b^{3} \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right) b+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{a^{3} \sqrt{-a^{2}+b^{2}}}-\frac{\tanh \left(\frac{x}{2}\right)^{3}}{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{2} b}{a^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}{a}+\frac{\arctan \left(\tanh \left(\frac{x}{2}\right)\right)}{a}-\frac{2 \arctan \left(\tanh \left(\frac{x}{2}\right)\right) b^{2}}{a^{3}} \\
& -\frac{2 b}{a^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{\tanh }{2}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{3}}{1+\operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 5 steps):

$$
-\frac{3 x}{2}+2 \ln (\cosh (x))+\frac{3 \tanh (x)}{2}-\tanh (x)^{2}+\frac{\tanh (x)^{2}}{2(1+\operatorname{coth}(x))}
$$

Result(type 3, 79 leaves):

$$
\begin{aligned}
& -\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}-\frac{7 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}+\frac{2\left(\tanh \left(\frac{x}{2}\right)^{3}-\tanh \left(\frac{x}{2}\right)^{2}+\tanh \left(\frac{x}{2}\right)\right)}{\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) \\
& \quad-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)}{1+\operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 15 leaves, 4 steps):

$$
-\frac{x}{2}+\frac{1}{2(1+\operatorname{coth}(x))}+\ln (\cosh (x))
$$

Result(type 3, 46 leaves):

$$
-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}+\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}
$$

Problem 44: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{coth}(a+2 \ln (x)) d x
$$

Optimal(type 3, 35 leaves, 5 steps):

$$
\frac{x^{3}}{3}+\frac{\arctan \left(\mathrm{e}^{\frac{a}{2}} x\right)}{\mathrm{e}^{\frac{3 a}{2}}}-\frac{\operatorname{arctanh}\left(\mathrm{e}^{\frac{a}{2}} x\right)}{\mathrm{e}^{\frac{3 a}{2}}}
$$

Result(type 3, 82 leaves):

$$
\frac{x^{3}}{3}+\frac{\ln \left(\left(-\mathrm{e}^{a}\right)^{3 / 2}-x \mathrm{e}^{2 a}\right)}{2\left(-\mathrm{e}^{a}\right)^{3 / 2}}-\frac{\ln \left(\left(-\mathrm{e}^{a}\right)^{3 / 2}+x \mathrm{e}^{2 a}\right)}{2\left(-\mathrm{e}^{a}\right)^{3 / 2}}+\frac{\ln \left(-x \sqrt{\mathrm{e}^{a}}+1\right)}{2\left(\mathrm{e}^{a}\right)^{3 / 2}}-\frac{\ln \left(x \sqrt{\mathrm{e}^{a}}+1\right)}{2\left(\mathrm{e}^{a}\right)^{3 / 2}}
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(a+2 \ln (x))}{x} \mathrm{~d} x
$$

Optimal(type 3, 10 leaves, 2 steps):

$$
\frac{\ln (\sinh (a+2 \ln (x)))}{2}
$$

Result (type 3, 25 leaves):

$$
-\frac{\ln (\operatorname{coth}(a+2 \ln (x))-1)}{4}-\frac{\ln (\operatorname{coth}(a+2 \ln (x))+1)}{4}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(a+2 \ln (x))}{x^{2}} \mathrm{~d} x
$$

Optimal (type 3, 29 leaves, 5 steps):

$$
\frac{1}{x}+\mathrm{e}^{\frac{a}{2}} \arctan \left(\mathrm{e}^{\frac{a}{2}} x\right)-\mathrm{e}^{\frac{a}{2}} \operatorname{arctanh}\left(\mathrm{e}^{\frac{a}{2}} x\right)
$$

Result (type 3, 92 leaves):

$$
\frac{1}{x}+\frac{\sqrt{\mathrm{e}^{a}} \ln \left(\left(\mathrm{e}^{a}\right)^{3 / 2}-x \mathrm{e}^{2 a}\right)}{2}-\frac{\sqrt{\mathrm{e}^{a}} \ln \left(-\left(\mathrm{e}^{a}\right)^{3 / 2}-x \mathrm{e}^{2 a}\right)}{2}+\frac{\sqrt{-\mathrm{e}^{a}} \ln \left(\left(-\mathrm{e}^{a}\right)^{3 / 2}-x \mathrm{e}^{2 a}\right)}{2}-\frac{\sqrt{-\mathrm{e}^{a}} \ln \left(-\left(-\mathrm{e}^{a}\right)^{3 / 2}-x \mathrm{e}^{2 a}\right)}{2}
$$

Problem 47: Unable to integrate problem.

$$
\int(e x)^{m} \operatorname{coth}(a+2 \ln (x)) \mathrm{d} x
$$

Optimal(type 5, 56 leaves, 3 steps):

$$
\frac{(e x)^{1+m}}{e(1+m)}-\frac{2(e x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right], \mathrm{e}^{2 a} x^{4}\right)}{e(1+m)}
$$

Result(type 8, 15 leaves):

$$
\int(e x)^{m} \operatorname{coth}(a+2 \ln (x)) \mathrm{d} x
$$

Problem 48: Unable to integrate problem.

$$
\int(e x)^{m} \operatorname{coth}(a+2 \ln (x))^{3} \mathrm{~d} x
$$

Optimal(type 5, 162 leaves, 5 steps):

$$
\begin{gathered}
\frac{(3+m)(5+m)(e x)^{1+m}}{8 e(1+m)}-\frac{(e x)^{1+m}\left(1+\mathrm{e}^{2 a} x^{4}\right)^{2}}{4 e\left(1-\mathrm{e}^{2 a} x^{4}\right)^{2}}-\frac{(e x)^{1+m}\left(\mathrm{e}^{2 a}(3-m)-\mathrm{e}^{4 a}(5+m) x^{4}\right)}{8 e \mathrm{e}^{2 a}\left(1-\mathrm{e}^{2 a} x^{4}\right)} \\
-\frac{\left(m^{2}+2 m+9\right)(e x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right], \mathrm{e}^{2 a} x^{4}\right)}{4 e(1+m)}
\end{gathered}
$$

Result(type 8, 17 leaves):

$$
\int(e x)^{m} \operatorname{coth}(a+2 \ln (x))^{3} \mathrm{~d} x
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{2}}{x} \mathrm{~d} x
$$

Optimal(type 3, 28 leaves, 3 steps):

$$
-\frac{\operatorname{coth}\left(a d+b d \ln \left(c x^{n}\right)\right)}{b d n}+\ln (x)
$$

Result(type 3, 79 leaves):

$$
-\frac{\operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{b d n}-\frac{\ln \left(\operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)-1\right)}{2 b d n}+\frac{\ln \left(\operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)+1\right)}{2 b d n}
$$

Problem 50: Unable to integrate problem.

$$
\int \frac{\operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{2}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 5, 132 leaves, 5 steps):

$$
\frac{-b d n+2}{2 b d n x^{2}}+\frac{1+\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}}{b d n x^{2}\left(1-\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}-\frac{2 \text { hypergeom }\left(\left[1,-\frac{1}{b d n}\right],\left[1-\frac{1}{b d n}\right], \mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}{b d n x^{2}}
$$

Result(type 8, 188 leaves):

$$
\begin{aligned}
& \left.\left.-\frac{1}{2 x^{2}}-\frac{2}{\left.\left.d b n x^{2}\left(\left(\mathrm{e}^{d\left(a+b\left(\ln (c)+\ln \left(\mathrm{e}^{n} \ln (x)\right.\right.\right.}\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n} \ln (x)\right)\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n} \ln (x)\right)+\operatorname{csgn}(\mathrm{I} c)\right)\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x)}\right)+\operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{n \ln (x)}\right)\right)}{2}\right)\right)\right)^{2}}-1\right)\right]+\int \\
& d b n x^{3}\left(\left(\mathrm{e}^{\left(\left(a+b\left(\ln (c)+\ln \left(\mathrm{e}^{n} \ln (x)\right)-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x)}\right)\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x)}\right)+\operatorname{csgn}(\mathrm{I} c)\right)\left(-\operatorname{csgn}\left(\mathrm{I} c \mathrm{e}^{n \ln (x)}\right)+\operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{n \ln (x)}\right)\right)}{2}\right)\right)\right)^{2}}-1\right) \mathrm{dx}\right.
\end{aligned}
$$

Problem 51: Unable to integrate problem.

$$
\int \operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 107 leaves, 4 steps):

$$
\frac{x\left(-1-\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)^{p} \text { AppellF1 }\left(\frac{1}{2 b d n}, p,-p, 1+\frac{1}{2 b d n}, \mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d},-\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)}{\left(1+\mathrm{e}^{2 a d}\left(c x^{n}\right)^{2 b d}\right)^{p}}
$$

Result(type 8, 17 leaves):

$$
\int \operatorname{coth}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{p} \mathrm{~d} x
$$

Problem 55: Unable to integrate problem.

$$
\int \frac{\tanh (x)}{\sqrt{a+b \operatorname{coth}(x)^{2}+c \operatorname{coth}(x)^{4}}} d x
$$

Optimal(type 3, 86 leaves, 8 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{2 a+b \operatorname{coth}(x)^{2}}{2 \sqrt{a} \sqrt{a+b \operatorname{coth}(x)^{2}+c \operatorname{coth}(x)^{4}}}\right)}{2 \sqrt{a}}+\frac{\operatorname{arctanh}\left(\frac{2 a+b+(b+2 c) \operatorname{coth}(x)^{2}}{2 \sqrt{a+b+c} \sqrt{a+b \operatorname{coth}(x)^{2}+c \operatorname{coth}(x)^{4}}}\right)}{2 \sqrt{a+b+c}}
$$

Result(type 8, 21 leaves):

$$
\int \frac{\tanh (x)}{\sqrt{a+b \operatorname{coth}(x)^{2}+c \operatorname{coth}(x)^{4}}} \mathrm{~d} x
$$

Test results for the 17 problems in "6.4.7 (d hyper)^m (a+b (c coth)^n)^p.txt" Problem 1: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{5} \mathrm{~d} x
$$

Optimal(type 3, 152 leaves, 4 steps):

$$
\begin{aligned}
& (a+b)^{5} x-\frac{b\left(5 a^{4}+10 a^{3} b+10 a^{2} b^{2}+5 a b^{3}+b^{4}\right) \operatorname{coth}(d x+c)}{d}-\frac{b^{2}\left(10 a^{3}+10 a^{2} b+5 a b^{2}+b^{3}\right) \operatorname{coth}(d x+c)^{3}}{3 d} \\
& \quad-\frac{b^{3}\left(10 a^{2}+5 b a+b^{2}\right) \operatorname{coth}(d x+c)^{5}}{5 d}-\frac{b^{4}(5 a+b) \operatorname{coth}(d x+c)^{7}}{7 d}-\frac{b^{5} \operatorname{coth}(d x+c)^{9}}{9 d}
\end{aligned}
$$

Result(type 3, 471 leaves):
$-\frac{2 \operatorname{coth}(d x+c)^{5} a^{2} b^{3}}{d}-\frac{\operatorname{coth}(d x+c)^{5} a b^{4}}{d}-\frac{10 \operatorname{coth}(d x+c)^{3} a^{3} b^{2}}{3 d}-\frac{10 \operatorname{coth}(d x+c)^{3} a^{2} b^{3}}{3 d}-\frac{5 \operatorname{coth}(d x+c)^{3} a b^{4}}{3 d}+\frac{5 \ln (\operatorname{coth}(d x+c)+1) a^{4} b}{2 d}$
$+\frac{5 \ln (\operatorname{coth}(d x+c)+1) a^{3} b^{2}}{d}+\frac{5 \ln (\operatorname{coth}(d x+c)+1) a^{2} b^{3}}{d}+\frac{5 \ln (\operatorname{coth}(d x+c)+1) a b^{4}}{2 d}-\frac{5 a^{4} b \operatorname{coth}(d x+c)}{d}-\frac{10 a^{3} b^{2} \operatorname{coth}(d x+c)}{d}$
$-\frac{10 a^{2} b^{3} \operatorname{coth}(d x+c)}{d}-\frac{5 a b^{4} \operatorname{coth}(d x+c)}{d}-\frac{5 \ln (\operatorname{coth}(d x+c)-1) a^{4} b}{2 d}-\frac{5 \ln (\operatorname{coth}(d x+c)-1) a^{3} b^{2}}{d}-\frac{5 \ln (\operatorname{coth}(d x+c)-1) a^{2} b^{3}}{d}$
$-\frac{5 \ln (\operatorname{coth}(d x+c)-1) a b^{4}}{2 d}-\frac{5 \operatorname{coth}(d x+c)^{7} a b^{4}}{7 d}-\frac{\operatorname{coth}(d x+c)^{7} b^{5}}{7 d}-\frac{\operatorname{coth}(d x+c)^{5} b^{5}}{5 d}-\frac{\operatorname{coth}(d x+c)^{3} b^{5}}{3 d}-\frac{\ln (\operatorname{coth}(d x+c)-1) a^{5}}{2 d}$
$-\frac{\ln (\operatorname{coth}(d x+c)-1) b^{5}}{2 d}-\frac{b^{5} \operatorname{coth}(d x+c)}{d}+\frac{\ln (\operatorname{coth}(d x+c)+1) a^{5}}{2 d}+\frac{\ln (\operatorname{coth}(d x+c)+1) b^{5}}{2 d}-\frac{b^{5} \operatorname{coth}(d x+c)^{9}}{9 d}$

Problem 2: Result more than twice size of optimal antiderivative

$$
\int\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{3} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 4 steps):

$$
(a+b)^{3} x-\frac{b\left(3 a^{2}+3 b a+b^{2}\right) \operatorname{coth}(d x+c)}{d}-\frac{b^{2}(3 a+b) \operatorname{coth}(d x+c)^{3}}{3 d}-\frac{b^{3} \operatorname{coth}(d x+c)^{5}}{5 d}
$$

Result(type 3, 234 leaves):
$\frac{\ln (\operatorname{coth}(d x+c)+1) a^{3}}{2 d}+\frac{3 \ln (\operatorname{coth}(d x+c)+1) a^{2} b}{2 d}+\frac{3 \ln (\operatorname{coth}(d x+c)+1) a b^{2}}{2 d}+\frac{\ln (\operatorname{coth}(d x+c)+1) b^{3}}{2 d}-\frac{\operatorname{coth}(d x+c)^{3} a b^{2}}{d}$

$$
\begin{aligned}
& -\frac{3 \operatorname{coth}(d x+c) a^{2} b}{d}-\frac{3 \operatorname{coth}(d x+c) a b^{2}}{d}-\frac{\operatorname{coth}(d x+c)^{3} b^{3}}{3 d}-\frac{\operatorname{coth}(d x+c) b^{3}}{d}-\frac{\ln (\operatorname{coth}(d x+c)-1) a^{3}}{2 d}-\frac{3 \ln (\operatorname{coth}(d x+c)-1) a^{2} b}{2 d} \\
& -\frac{3 \ln (\operatorname{coth}(d x+c)-1) a b^{2}}{2 d}-\frac{\ln (\operatorname{coth}(d x+c)-1) b^{3}}{2 d}-\frac{b^{3} \operatorname{coth}(d x+c)^{5}}{5 d}
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 128 leaves, 6 steps):

$$
\frac{x}{(a+b)^{3}}+\frac{b \operatorname{coth}(d x+c)}{4 a(a+b) d\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2}}+\frac{b(7 a+3 b) \operatorname{coth}(d x+c)}{8 a^{2}(a+b)^{2} d\left(a+b \operatorname{coth}(d x+c)^{2}\right)}-\frac{\left(15 a^{2}+10 b a+3 b^{2}\right) \arctan \left(\frac{\sqrt{a} \tanh (d x+c)}{\sqrt{b}}\right) \sqrt{b}}{8 a^{5 / 2}(a+b)^{3} d}
$$

$$
\text { Result(type 3, } 351 \text { leaves): }
$$

$$
\frac{\ln (\operatorname{coth}(d x+c)+1)}{2 d(a+b)^{3}}+\frac{7 b^{2} \operatorname{coth}(d x+c)^{3}}{8 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2}}+\frac{5 b^{3} \operatorname{coth}(d x+c)^{3}}{4 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2} a}+\frac{3 b^{4} \operatorname{coth}(d x+c)^{3}}{8 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2} a^{2}}
$$

$$
+\frac{9 b a \operatorname{coth}(d x+c)}{8 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2}}+\frac{7 b^{2} \operatorname{coth}(d x+c)}{4 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2}}+\frac{5 b^{3} \operatorname{coth}(d x+c)}{8 d(a+b)^{3}\left(a+b \operatorname{coth}(d x+c)^{2}\right)^{2} a}
$$

$$
+\frac{15 b \arctan \left(\frac{\operatorname{coth}(d x+c) b}{\sqrt{b a}}\right)}{8 d(a+b)^{3} \sqrt{b a}}+\frac{5 b^{2} \arctan \left(\frac{\operatorname{coth}(d x+c) b}{\sqrt{b a}}\right)}{4 d(a+b)^{3} a \sqrt{b a}}+\frac{3 b^{3} \arctan \left(\frac{\operatorname{coth}(d x+c) b}{\sqrt{b a}}\right)}{8 d(a+b)^{3} a^{2} \sqrt{b a}}-\frac{\ln (\operatorname{coth}(d x+c)-1)}{2 d(a+b)^{3}}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(x)^{3} \sqrt{a+b \operatorname{coth}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 51 leaves, 6 steps):

$$
-\frac{\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}}{3 b}+\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{coth}(x)^{2}}}{\sqrt{a+b}}\right) \sqrt{a+b}-\sqrt{a+b \operatorname{coth}(x)^{2}}
$$

Result(type 3, 252 leaves):

$$
\begin{aligned}
& -\frac{\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}}{3 b}-\frac{\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{2} \\
& \quad-\frac{\sqrt{b} \ln \left(\frac{(\operatorname{coth}(x)-1) b+b}{\sqrt{b}}+\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{}
\end{aligned}
$$

2

$$
+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{\operatorname{coth}(x)-1}\right)}{2}
$$

$$
-\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{2}+\frac{\sqrt{b} \ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right)}{2}
$$

$$
+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{1+\operatorname{coth}(x)}\right)}{2}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(x)^{2} \sqrt{a+b \operatorname{coth}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 67 leaves, 7 steps):

$$
-\frac{(a+2 b) \operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)}{2 \sqrt{b}}+\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right) \sqrt{a+b}-\frac{\operatorname{coth}(x) \sqrt{a+b \operatorname{coth}(x)^{2}}}{2}
$$

Result(type 3, 275 leaves):

$$
\begin{aligned}
& -\frac{\operatorname{coth}(x) \sqrt{a+b \operatorname{coth}(x)^{2}}}{2}-\frac{a \ln \left(\operatorname{coth}(x) \sqrt{b}+\sqrt{\left.a+b \operatorname{coth}(x)^{2}\right)}\right.}{2 \sqrt{b}}-\frac{\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{2} \\
& \left.-\frac{\sqrt{b} \ln \left(\frac{(\operatorname{coth}(x)-1) b+b}{\sqrt{b}}+\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{2}\right) \\
& \left.+\frac{\sqrt{a+b} \ln \left(\frac{\left.2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{\operatorname{coth}(x)-1}\right.}{2}\right) \\
& \left.+\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{2}-\frac{\sqrt{b} \ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right)}{2}\right) \\
& -\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{2}\right.}{}
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(x) \sqrt{a+b \operatorname{coth}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 5 steps):

$$
\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{coth}(x)^{2}}}{\sqrt{a+b}}\right) \sqrt{a+b}-\sqrt{a+b \operatorname{coth}(x)^{2}}
$$

Result(type 3, 237 leaves):

$$
+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{\operatorname{coth}(x)-1}\right)}{2}
$$

$$
-\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{2}+\frac{\sqrt{b} \ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right)}{2}
$$

$$
+\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{1+\operatorname{coth}(x)}\right)}{2}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \operatorname{coth}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 6 steps):

$$
-\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right) \sqrt{b}+\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right) \sqrt{a+b}
$$

Result(type 3, 237 leaves):

$$
\begin{aligned}
& +\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{\operatorname{coth}(x)-1}\right)}{2} \\
& +\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}{2}-\frac{\sqrt{b} \ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right)}{2}
\end{aligned}
$$

$$
-\frac{\sqrt{a+b} \ln \left(\frac{\left.2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right)}{1+\operatorname{coth}(x)}\right)}{2}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(x)^{2}\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 101 leaves, 8 steps):

$$
\begin{aligned}
& (a+b)^{3 / 2} \operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)-\frac{\left(3 a^{2}+12 b a+8 b^{2}\right) \operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)}{8 \sqrt{b}}-\frac{(5 a+4 b) \operatorname{coth}(x) \sqrt{a+b \operatorname{coth}(x)^{2}}}{8} \\
& -\frac{b \operatorname{coth}(x)^{3} \sqrt{a+b \operatorname{coth}(x)^{2}}}{4} \\
& \text { Result(type 3, } 632 \text { leaves): } \\
& -\frac{\operatorname{coth}(x)\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}}{4}-\frac{3 a \operatorname{coth}(x) \sqrt{a+b \operatorname{coth}(x)^{2}}}{8}-\frac{3 a^{2} \ln \left(\operatorname{coth}(x) \sqrt{b}+\sqrt{a+b \operatorname{coth}(x)^{2}}\right)}{8 \sqrt{b}} \\
& -\frac{\left((\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b\right)^{3 / 2}}{6}-\frac{b \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b} \operatorname{coth}(x)}{4} \\
& -\frac{3 \sqrt{b} \ln \left(\frac{(\operatorname{coth}(x)-1) b+b}{\sqrt{b}}+\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right) a}{4} \\
& +\frac{\sqrt{a+b} \ln \left(\frac{\left.2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{\operatorname{coth}(x)-1}\right) a}{2} \\
& -\frac{\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b} a}{2}-\frac{\ln \left(\frac{(\operatorname{coth}(x)-1) b+b}{\sqrt{b}}+\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right) b^{3 / 2}}{2} \\
& +\frac{\sqrt{a+b} \ln \left(\frac{2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}}{\operatorname{coth}(x)-1}\right) b}{2} \\
& -\frac{\sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b} b}{2}+\frac{\left((1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b\right)^{3 / 2}}{6} \\
& -\frac{b \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b} \operatorname{coth}(x)}{4} \\
& -\frac{3 \sqrt{b} \ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right) a}{4} \\
& -\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right) \sqrt{a+b} a}{1+\operatorname{coth}(x)}\right)}{2} \\
& +\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b} a}{2}-\frac{\ln \left(\frac{(1+\operatorname{coth}(x)) b-b}{\sqrt{b}}+\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right) b^{3} / 2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\ln \left(\frac{\left.2 a+2 b-2(1+\operatorname{coth}(x)) b+2 \sqrt{a+b} \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}\right) \sqrt{a+b} b}{1+\operatorname{coth}(x)}\right.}{2} \\
& +\frac{\sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b} b}{2}
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{-1-\operatorname{coth}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 6 steps):

$$
\arctan \left(\frac{\operatorname{coth}(x)}{\sqrt{-1-\operatorname{coth}(x)^{2}}}\right)-\arctan \left(\frac{\operatorname{coth}(x) \sqrt{2}}{\sqrt{-1-\operatorname{coth}(x)^{2}}}\right) \sqrt{2}
$$

Result(type 3, 141 leaves):
$-\frac{\sqrt{-(\operatorname{coth}(x)-1)^{2}-2 \operatorname{coth}(x)}}{2}+\frac{\arctan \left(\frac{\operatorname{coth}(x)}{\sqrt{-(\operatorname{coth}(x)-1)^{2}-2 \operatorname{coth}(x)}}\right)}{2}+\frac{\sqrt{2} \arctan \left(\frac{(-2-2 \operatorname{coth}(x)) \sqrt{2}}{4 \sqrt{-(\operatorname{coth}(x)-1)^{2}-2 \operatorname{coth}(x)}}\right)}{2}$

$$
\left.\left.+\frac{\sqrt{-(1+\operatorname{coth}(x))^{2}+2 \operatorname{coth}(x)}}{2}+\frac{\operatorname{coth}(x)}{2}\right) \sqrt{2} \arctan \left(\frac{(-2+2 \operatorname{coth}(x)) \sqrt{2}}{\sqrt{-(1+\operatorname{coth}(x))^{2}+2 \operatorname{coth}(x)}}\right) \frac{4 \sqrt{-(1+\operatorname{coth}(x))^{2}+2 \operatorname{coth}(x)}}{2}\right)
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a+b \operatorname{coth}(x)^{2}}} d x
$$

Optimal(type 3, 25 leaves, 3 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)}{\sqrt{a+b}}
$$

Result(type 3, 113 leaves):

$$
\frac{\ln \left(\frac{\left.2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{\operatorname{coth}(x)-1}\right.}{2 \sqrt{a+b}}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{2}}{\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)}{(a+b)^{3 / 2}}-\frac{\operatorname{coth}(x)}{(a+b) \sqrt{a+b \operatorname{coth}(x)^{2}}}
$$

Result(type 3, 288 leaves):

$$
\left.\begin{array}{l}
-\frac{1}{a \sqrt{a+b \operatorname{coth}(x)^{2}}}-\frac{\operatorname{coth}(x)}{2(a+b) \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}} \\
\quad+\frac{b(2(\operatorname{coth}(x)-1) b+2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}} \\
+\frac{\ln \left(\frac{\left.2 a+2 b+2(\operatorname{coth}(x)-1) b+2 \sqrt{a+b} \sqrt{(\operatorname{coth}(x)-1)^{2} b+2(\operatorname{coth}(x)-1) b+a+b}\right)}{\operatorname{coth}(x)-1}\right.}{2(a+b)^{3 / 2}} \\
+\frac{1}{2(a+b) \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}+\frac{b(2(1+\operatorname{coth}(x)) b-2 b)}{(a+b)\left(4 b(a+b)-4 b^{2}\right) \sqrt{(1+\operatorname{coth}(x))^{2} b-2(1+\operatorname{coth}(x)) b+a+b}}
\end{array}\right)
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{\tanh (x)}{\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 64 leaves, 8 steps):

Result(type 8, 15 leaves):

$$
\int \frac{\tanh (x)}{\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)}{\left(a+b \operatorname{coth}(x)^{2}\right)^{5 / 2}} d x
$$

Optimal(type 3, 58 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a+b \operatorname{coth}(x)^{2}}}{\sqrt{a+b}}\right)}{(a+b)^{5 / 2}}-\frac{1}{3(a+b)\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}}-\frac{1}{(a+b)^{2} \sqrt{a+b \operatorname{coth}(x)^{2}}}
$$

Result(type 3, 419 leaves):

$$
\int \frac{\tanh (x)^{2}}{\left(a+b \operatorname{coth}(x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 113 leaves, 7 steps):
$\frac{\operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a+b}}{\sqrt{a+b \operatorname{coth}(x)^{2}}}\right)}{(a+b)^{5 / 2}}+\frac{b \tanh (x)}{3 a(a+b)\left(a+b \operatorname{coth}(x)^{2}\right)^{3 / 2}}+\frac{b(7 a+4 b) \tanh (x)}{3 a^{2}(a+b)^{2} \sqrt{a+b \operatorname{coth}(x)^{2}}}-\frac{(3 a+2 b)(a+4 b) \sqrt{a+b \operatorname{coth}(x)^{2}} \tanh (x)}{3 a^{3}(a+b)^{2}}$
Result(type 8, 17 leaves):

$$
\int \frac{\tanh (x)^{2}}{\left(a+b \operatorname{coth}(x)^{2}\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{-1-\operatorname{coth}(x)^{2}}} d x
$$

Optimal(type 3, 22 leaves, 3 steps):

$$
\frac{\arctan \left(\frac{\operatorname{coth}(x) \sqrt{2}}{\sqrt{-1-\operatorname{coth}(x)^{2}}}\right) \sqrt{2}}{2}
$$

Result(type 3, 65 leaves):

$$
-\frac{\sqrt{2} \arctan \left(\frac{(-2-2 \operatorname{coth}(x)) \sqrt{2}}{4 \sqrt{-(\operatorname{coth}(x)-1)^{2}-2 \operatorname{coth}(x)}}\right)}{4}+\frac{\sqrt{2} \arctan \left(\frac{(-2+2 \operatorname{coth}(x)) \sqrt{2}}{4 \sqrt{-(1+\operatorname{coth}(x))^{2}+2 \operatorname{coth}(x)}}\right)}{4}
$$

Summary of Integration Test Results

94 integration problems

A - 39 optimal antiderivatives
B - 36 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 19 unable to integrate problems
E - O integration timeouts

